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Abstract 

The free volume distribution has been a qualitatively useful concept by which dynamical 
properties of polymers, such as the penetrant diffusion constant, viscosity, and glass 
transition temperature, could be correlated with static properties. In an effort to put this 
on a more quantitative footing, we define the free volume distribution as the probability 
of finding a spherical cavity of radius R in a polymer liquid. This is identical to the 
insertion probability in scaled particle theory, and is related to the chemical potential of 
hard spheres of radius R in a polymer in the Henry’s law limit. We used the Polymer 
Reference Interaction Site Model (PRISM) theory to compute the free volume 
distribution of semiflexible polymer melts as a function of chain stiffness. Good 
agreement was found with the corresponding free volume distributions obtained from 
MD simulations. Surprisingly, the free volume distribution was insensitive to the chain 
stiffness, even though the single chain structure and the intermolecular pair correlation 
functions showed a strong dependence on chain stiffness. We also calculated the free 
volume distributions of polyisobutylene (PIB) and polyethylene (PE) at 298K and at 
elevated temperatures from PRISM theory. We found that PIB has more of its free 
volume distributed in smaller size cavities than for PE at the same temperature. 
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INTRODUCTION 

The concept of free volume has a time honored tradition in polymer science and has 

been very useful in qualitatively explaining many phenomena associated with the local 

mobility of chains including: viscoelasticity, glass transition*, physical aging, 

viscosity, and diffusion. While being a qualitatively useful concept, very little work 

has been done to quantitatively apply free volume ideas to predict dynamical quantities. 

Free volume plays a central role in some equations of state. In fact, the free volume 

distribution enters directly into the scaled particle theory of Reiss and collaborators’ for 

the equation of state of hard sphere liquids. For polymers, Simha and Somcynskyg 

introduced free volume into their equation of state of polymer melts and blends. Because 

of the lattice nature of the theory, the free volume in Simha - Somcynsky theory is 

quantized to large volumes of order of the monomer size. In the present investigation, we 

calculate the free volume distribution of polymer melts in continuous space. 

The free volume distribution can be measured experimentally in various polymers 

with positron annihilation lifetime spectroscopy’oV” (PALS). Correlations have been made 

between free volume distributions obtained from PALS and the equation-of-state”, glass 

transition”, physical aging”, and gas diffusivity’*. Furthermore, the free volume obtained 

from PALS experiments has been interpreted in terms of the Simha - Somcynsky theory. 

Previous investigators have deduced the free volume distribution of polymer melts 

from molecular dynamics (MD) and Monte Carlo (MC) simulations. Takeuchi and 

coworkers’3 extracted a free volume distribution from the radial distribution function 

obtained from MD simulations on polyethylene. Tamai and coworkers14 identified the 

free volume distribution with the insertion probability for inserting-a spherical cavity into 
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polydimethyl siloxane and polyethylene liquids modeled with MD simulations. Recently 

Bharadwaj and Boyd” performed similar free volume distribution calculations based on 

MD simulations of a number of polymer liquids. Greenfield and Theodorot?j used a 

tesselation approach to extract anisotropic free volume distributions from MC and energy 

minimization simulations on liquid and glassy atactic polypropylene. 

Curro and Schweizer” developed the polymer reference interaction site model or 

PRISM theory for modeling the structure and thermodynamic properties of polymer 

melts and blends. PRISM theory is based on liquid state theoretical methods and has as 

its primary output information about the structure, or packing, of the polymer liquid. This 

structural information can be used to extract the insertion probability, or the chemical 

potential for inserting a spherical particle of a given diameter into the polymer. In fact 

this method was used previously by Curro, Honnell, and McCoy’* to calculate the 

solubility of monatomic gases in polymers. In the present investigation we use PRISM 

theory to calculate the probability of inserting a spherical cavity into a homopolymer 

melt. By studying this insertion probability as a function of the cavity size, we are able to 

extract the free volume distribution of the polymer. We will gage the accuracy of the 

theoretical free volume distributions by comparing with exact results from MD 

simulations on a coarse grained model. Furthermore we will use PRISM theory to model 

the free volume distribution of polyethylene and polyisobutylene melts. 

An interesting question that can be addressed, if one has a quantitative measure of 

the free volume distribution, concerns the relationship between free volume and physical 

properties. Can dynamical phenomena, such as diffusion, be correlated with the free 

volume distribution, an inherently static, equilibrium quantity? Although we will briefly 



touch on this question, the primary purpose of this investigation is to demonstrate that the 

free volume distribution can be computed from integral equation theory. 

THEORY AND SIMULATION 

PRISM fieoTy”.‘%*o.*l is an extension to polymers of the reference interaction site 

model of Chandler and Andersen22923 of molecular liquids. Since the theory is based on 

liquid state physics concepts, the output is information regarding the structure of the 

liquid expressed through a set of intermolecular pair correlation functions g,(r) between 

interaction sites a and y on different macromolecules (see Fig. 1). The intermolecular 

packing (h,(r) = g,(r)- 1) is related to the intramolecular structure through a 

generalized Omstein-&mike equation” 

i;(k)=fi(k).C(k). &k)+p.h(k) 
- L - - 1 (1) 

where the caret denotes the Fourier transform with wave vector k and p is the diagonal 

matrix of site densities pa of type CL The average intramolecular structure of a chain of 

N monomers is characterized by the single-chain structure factor defined as 

(2) 

where N, is the number of sites of type a per chain. The indices i and j in Eq. (2) sum 

over the sites of type a and y on the chain. 

The generalized Omstein-Zemike equation also involves the matrix C,(r) known 

as the direct correlation function. For van der Waals interactions at liquidlike densities, it 



can be demonstrated’7’24 that the direct correlation function is a short range function of 

distance. Based on this idea C,(r) can be approximated by the Percus-Yevik closure”“4 

C,(r) = (l-exp[Pv,(r)]}gq W (W 

where v,,<r) is the united atom potential between intermolecular sites. For the case of a 

hard core potential the PY closure reduces to 

g,(r) = 0 for r < d, 

C,(r) = 0 for r > d, 
(3b) 

where d, is the hard core distance between sites, We start with united atom potentials of 

the Lennard-Jones type 

vay(r) = 4E,, [(yy!zJ] (4) 

For dense liquids it is well established24 that the structure of the liquid is determined by 

the repulsive part of the potential. This motivates us to decompose the Lennard-Jones 

potential into a repulsive, reference part v,(r) and an attractive, or perturbative part v,(r) 

following Weeks, Chandler and Anderser? (WCA) 

(5a) 
v,(r) = 0 r 2 21’60 
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vi(r) = -E r I2’“cr 

(5b) 

v,(r) = 4a[(:)ll-(4y] r 2 2”6<3 

Previous work” has demonstrated that PRISM theory works best for repulsive potentials. 

For this reason we employ the WCA repulsive branch of the LJ potential in the closure 

relation in Eq. (3). We can also approximate the soft repulsive potential in Eq. (5a) by an 

equivalent hard core potential with a hard core diameter d given by the Barker-Henderson 

relation24’26 

d = I{ 1 - exp[-pv,(r)]}dr (6) 
0 

where as usual p = 11 k,T. The potential parameters and equivalent hard sphere 

diameters used in this work are given in Table 1. 

If we know the average intramolecular structure functions specified through 

6,(k) in Eq. (2), then the generalized Omstein-Zemike equation in Eq. (l), together 

with the closure relation in Eq. (3) can be solved numerically for the intermolecular 

packing correlations g,(r). To first order, one can approximate h,(k) through the 

Flory ideaiity hypothesis”**’ by assuming that long range excluded volume interactions 

are screened in the bulk polymer liquid. Thus effectively we assume that the 

intramolecular structure of the polymers is ideal in the melt. Another approach is to take 

h,(k) from a full, many chain MD simulation if this information is available. We will 

do this in the present investigation for a coarse grained polymer model. In the absence of 

exact many chain simulations, we can solve for both the intra and intermolecular 

structure in a self-consistent manner”. 
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In the self-consistent approach, one performs a single chain simulation with all 

intramolecular repulsive interactions turned on. The effect of the surrounding chains is 

mimicked through a self-consistently determined solvation potential W,(r) acting 

between all pairs of intramolecular sites. The form of the solvation potential was taken to 

be” 

@&(k) = -xC,(k)Sij(k)Cj,(k) 
i.j 

(7) 

where the partial structure factor matrix is defined according to 

8,(k)=Pai2,(k)+PaP,~,(k) ’ (8) 

Self consistent calculations of this type have been carried out recently on polyethylenez 

(PE), isotactic polypropylene (iPP), syndiotactic polypropylene (sPP), polyisobutylene*’ 

(PIP), head-to-head polypropylene (hhPP), and poly (ethylene propylene)” (PEP). 

Chandler and Pratt”*3’ showed that the chemical potential for inserting a hard sphere 

particle into a liquid could be found by growing the particle from a point. This approach 

was used by Pratt and Chandle?’ to calculate the Henry’s law constant for methane in 

water. The formalism was also employed by Curro and coworkers’* to compute the 

solubility of monatomic gases in polymers. Following Chandleti3 we can write the 

chemical potential p, suitably modified for multisite polymers’3, for inserting a hard 

sphere of diameter D into a polymer melt of monomer density pm as 

with p,, being the chemical potential of an ideal gas of particles. The sum in the above 

equation extends over all sites constituting the monomer structure. Eq. (9) is written in 
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the Henry’s law limit where the particle concentration is taken to zero. gk[.5(d, + hi)] 

is the contact value of the pair correlation function between a particle of diameter hD and 

a site on a polymer chain of type a. Eq. (9) is a charging integral that grows the particle 

from a point to diameter D as the charging parameter h varies from 0 to 1. In the 

solubility calculations of Curror3 et. al. PRISM theory was used to compute the contact 

pair correlation function as a function of the charging parameter. It should be pointed out 

that Eq. (9) is written for the case where both the particle being inserted and the polymer 

sites interact with hard core potentials. Although Eq. (9) can be generalized23 to soft 

potentials, the implementation is much simpler for the hard core interactions. In the 

present investigation we will consider the hard core case where the hard core site 

diameiers da are computed from the Lennard-Jones parameters using Eqs. (5) and (6). 

We now make use of the fact that the chemical potential for inserting a spherical 

cavity into a liquid is the same as for a hard sphere. The only differenceZ3 between a 

cavity and a hard sphere is that cavities do not interact with each other. In the Henry’s 

law limit, therefore, Eq. (9) also represents the chemical potential for inserting a cavity of 

diameter D=2R into a polymer melt. Another interpretation is that the reversible work for 

growing a spherical hole of radius R is w(R) = p.(R) - l.rLo. Thus we can write 

Pw(R) = xRpCjdh(d, + 2kR)*g;n( da :‘“i 
a 0 

(10) 

In this investigation we define the free volume V, as simply the empty space 

existing between and among the polymer molecules, where the chains are modeled with 

overlapping hard sphere sites. According to this definition, the fraction f, of the total 

volume that is free is 
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where TJ is the packing fraction of the polymer molecules. The question we would like to 

answer is how this free volume is distributed. We can use the reversible work for growing 

a cavity given by Eq. (10) to compute the insertion probability P(R) for finding a 

spherical cavity of radius R in the polymer liquid*. 

P(R) = f. exp[-PWV] (12) 

The coefficient in Eq. (12) is required because the probability of inserting a point is 

given by the free volume fraction. We now identify the free volume distribution f(R) as 

the probability of finding a spherical cavity with a radius in the range R and R+DR. This 

can be related to the insertion probability through 

f(R)=-g, P(R)=jf(R’)dR’ (13) 
R 

From Eqs. (12) and (13) we see that f(R) is normalized to f, since the integral over all 

possible cavity radii must be the total free volume fraction. It is apparent that Eqs. (1) and 

(3) can be used to compute the contact pair correlation in Eq. (10) which can then be used 

to obtain the free volume distribution for a particular polymer model. 

In order to assess the accuracy of using PRISM theory for obtaining the free volume 

distribution, we also performed MD simulations on coarse grained and atomistic polymer 

models. The MD simulations were run using the LAMMPS code developed by 

Plimpton3’ and used previously to study diffusion of penetrants in polymer melts3*. The 

MD methodolgy33 is based on a Verlet algorithm. Snapshots were periodically taken and 

analyzed to obtain the free volume distribution. 
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RESULTS AND DISCUSSION 

A) Coarse-grained Model 

We first applied PRISM theory to compute the free volume distribution of a 

coarse-grained, semiflexible chain model consisting of tangent sites depicted in Fig. 1. We 

introduce chain stiffness into this model, as was done in an earlier study3*, through a 

harmonic bond angle bending potential. 

E= K(B-8,)* (14) 

where 9 is the bond angle (see Fig. 1) and 8, = 120”. As the stiffness (in units of k,T) is 

varied from zero to infinity we pass from a freely jointed to a freely rotating chain. In 

practice a K value of 20, the maximum value in the present study, leads essentially to the 

freely rotating, K + OQ limit. All the coarse grained calculations were for the case of 

N=50 repeat units. 

From MD simulations on this model we extracted the single chain structure 

factors as defined in Eq. (2). A Kratky plot of these single chain functions is shown in 

Fig. 2 for various chain stiffnesses. It can be demonstrated” that the plateau occurs at 

k*&(k) = 12 / (3’ in the intermediate scaling regime (1 / (3 < k < 11 Rp ) . Therefore, as seen 

in Fig. 2, the plateau decreases as the stiffness parameter increases since the effective 

statistical segment length CT increases with K. These single chain structures factors were 

used as input to PRISM theory in Eq. (1) which, together with the closure in Eq. (3a), 

was solved for the intermolecular pair correlation functions g(r). Standard Picard 

iteration” was used to find numerical solutions to the integral equation. The soft, 

repulsive potential from Eq. (5a) was used with the Lennard-Jones parameters given in 

Table 1. 
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Fig. 3 depicts the pair correlation functions obtained from PRISM theory at three 

different stiffness parameters K=O, 1,20. It can be seen from this figure that g(r) becomes 

larger near contact as the chain stiffness increases. This is as expected” because more 

intermolecular overlap can occur as the chains become extended. At the same time there 

are fewer intramolecular contacts since the average distance. between intramolecular pairs 

increases as the chains become stiffer. This behavior was observed previously by Honnell 

and coworkers” for semiflexible chain models. 

We now focus on using PRISM theory to determine the insertion probability of 

these semiflexible chain liquids. PRISM calculations were performed for a mixture of 

tangent site, hard sphere chains with site diameters (d=1.0156) and holes consisting of 

spherical sites of diameter 2hR in the infinite dilution of holes limit. The intramolecular 

structure factor of the polymer, h,,(k), was taken from the MD simulations shown in 

Fig. 2. From Eq. (2) it can be seen that for a spherical void (or particle), h,,(k) = 1 while 

the cross term can be shown to be h,,(k) = 0. This intramolecular structure factor matrix 

was inserted into Eqs. (1) and (3b) to calculate the polymer/void intermolecular radial 

distribution function at contact as the charging parameter h varies from 0 to 1. The 

contact g was then used in Eqs. (10) and (11) to obtain the reversible work for inserting a 

cavity. For the case of a tangent hard sphere chain the total free volume fraction f, is 

easily found to be f0 = 1 - nd3p,.,, /6. The insertion probability P(R) can now be obtained 

from Eq. (12). The results are shown for the flexible chain case with K=O as the solid 

curve in Fig. 4. 

The dotted curves in Fig. 4 were obtained from the MD simulation for the K=O 

flexible chain liquid. It can be seen that there is excellent agreement between PRISM 
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theory and the exact simulations for small free volume void sizes. In the inset we 

emphasize the tail of the distribution by plotting log P(R). We can observe from the inset 

in Fig. 4 that the probability of inserting a cavity of volume comparable to the monomer 

volume is very small (-10s4). We also note that PRISM theory predicts a larger insertion 

probability than the MD simulation for larger cavity sizes in the tail of the distribution. 

This is not surprising since it has been demonstrated previously*’ that PRISM theory 

tends to overestimate the compressibility of polymer melts. Since it is easier to insert a 

particle into a more compressible medium, one would expect the insertion probability to 

increase with compressibility. 

We can approximately correct PRISM theory to give the correct compressibility 

by adding a tail function to the direct correlation function C,,(r) between polymer sites 

outside the hard core. This is accomplished by modifying the hard sphere closure in Eq. 

(3b) with a power law for the direct correlation function as was done previously’* 

g,,,(r)=0 for r <dPP 

(3c) 

C,,(r) = C,,(d,,) for r > d,, 

where the exponent h is chosen to require the isothermal compressibility tc,to agree with 

experiment or simulation. We found that by taking h = 15 we obtained numerical 

agreement between the zero wave vector structure factors (S(0) = p,k,TK,) from 

PRISM theory and MD simulation of a flexible polymer melt (K=O). Eq. (3~) was then 

used (with X=15) in the PRISM calculation of the polymer/void mixture to extract the 

insertion probability as before. It should be mentioned that the closure in Eq. (3b) was 

still used to describe C,,(r) between cavities, and the cross term C,,(r). This result is 
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shown in Fig. 4 as the dashed curve in the inset. It can be seen that some improvement in 

the PRISM calculation of the insertion probability is obtained in the tail of the 

distribution when the theory is corrected for the compressibility. 

Eq. (13) can be used to obtain the free volume distribution f(R) by numerical 

differentiation of the insertion probability. The results for the free volume distributions of 

the flexible chain liquid are shown in Fig. 5 for both the theory and simulation. As for the 

insertion probability, reasonable agreement between theory and simulation is seen in f(R) 

for small free volume cavities. It will be noticed that there appears to be a maximum in 

the free volume distribution in the range 0 < R< 0.1. It should be mentioned that the 

shape of the free volume distribution near R=O is somewhat sensitive to the numerical 

uncertainties in taking the derivative of P(R). The tail of the distribution is emphasized in 

the inset as a plot of log f(R) versus R*. Inspection of these curves reveals that they are 

nonlinear indicative of a nonGaussian character in the distribution. As we observed for 

the insertion probability, PRISM theory predicts the free volume distribution to be larger 

than the MD simulation for large cavity sizes. When we correct for compressibility we 

improve the agreement as can be seen in the inset of Fig. 4. 

We also obtained the insertion probabilities and free volume distributions from 

PRISM theory and MD simulation for semiflexible chains with nonzero stiffness 

parameters up to K=20. Even though significant chain stiffness effects were apparent in 

the intramolecular structure (Fig. 2), and the intermolecular packing (Fig. 3), practically 

no differences were observed in P(R) and f(R) as a function of chain stiffness. We can 

characterize the free volume distributions through an average cavity radius (R) 

(Rn)=j R”f(R)dR (15) 
0 
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and the breadth of the distribution by (R’) - (R)* . Th e values obtained from both PRISM 

and MD simulation are tabulated in Table 2 as a function of the chain stiffness parameter 

K. It can be seen from the table that both the average cavity radius and the breadth of the 

free volume distribution are independent of chain stiffness. 

B) Realistic Models 

While coarse-grained models are useful for predicting properties on long length 

scales such as the radius of gyration, thermodynamic properties are sensitive to local 

packing at the monomeric length scale. In order to see if the geometry of the monomer 

structure influences the free volume distribution, we studied atomistic models of 

polyethylene (PE) and polyisobutylene (PIB). The repeat units of these polymers are 

constructed from overlapping sites as shown schematically in Fig. 1. In the case of PE 

each site represents a CH, unit. For PIB we have three independent sites denoted as A, B, 

and C corresponding respectively to CH,, C, and CH, groups. Bond lengths were 

maintained constant at 1.54 A; bond angle and torsional angle potentials, as well as, 

nonbonded potentials, were taken from Jorgensen et. a1.35 for PE, and Martin and 

Siepmann36 for PIB. 

Self consistent PRISM theory has been applied previously to these models of 

polyethylene** and polyisobutylene2g*30 liquids. The intermolecular pair correlation 

functions for both PE (N=66 monomers) and PIB (N=12 monomers) liquids are given in 

Fig. 6. Note in the case of PIB, six independent radial distribution functions g,(r) are 

required to completely characterize the intermolecular packing. As expected, gee(r) is 

16 



large near contact since the C groups (CH,) are on the outside of the chain and can 

approach each other unhindered in the melt. At the same time correlations between 

backbone sites are shielded by the pendant methyl groups and this is reflected in gAA(r) 

and g&r) approaching zero well before contact. 

The intramolecular structure functions h,(k) from these earlier studies**‘” were 

used in the present investigation as input to PRISM theory of the polymer/void mixture. 

In this manner we calculated the contact gh aD appearing in Eq. (10) as a function of the 

charging parameter h. The reversible work for growing a spherical cavity of radius R was 

then found by numerically integrating Eq. (10). 

In the case of the tangent site model we were able to calculate the packing 

fraction of polymer in the liquid. For the overlapping site models we are now 

considering, analytical determination of the packing fraction is very difficult due to the 

existence of not only binary overlaps, but also three and four body overlaps of the sites. 

For this reason we estimated the packing fractions of PE and PIB, given in Table 2, from 

MD simulations of the probability for inserting a point into the liquid. Since MD 

simulations were not performed for PE at 298K, we estimated the packing fraction at this 

temperature from its value at 448K from the approximate relation 

d3p, (16) 

where the effective hard core diameters and monomer densities are given Table 2. From 

Table 2 we see that the total free volume fraction f, of PlB at ( f, = 0.407,0.482) at 298K 

and 453K is smaller than for PE ( f. = 0.426,0.519) at 298K and 448K. This is consistent 
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with the notion that PIB macromolecules pack more efficiently in the melt than other 

polymers at the same temperature. 

Eqs. (12) and (13) can now be employed to compute the insertion probability and 

free volume distribution of PE and PIB. A comparison of these two polymers is given in 

Fig. 7 at elevated temperature and Fig. 8 at room temperature From these figures it can be 

seen that the free volume distributions of PE and PIB are remarkably similar considering 

the differences in monomer architecture. Nonetheless we see that PIB has more of its free 

volume distributed in smaller size voids than is the case for PE. Qualitatively similar 

behavior was observed by Bharadwaj and Boyd” for the insertion probabilities of PE and 

PIB. The total free volumes, or the insertion probability for inserting a point P(O), 

reported by Bharadwaj and Boyd are larger than ours because they defined the hard core 

diameter of a site as the Lennard-Jones 0 parameter, whereas we use the WCA definition 

of d obtainable from Eqs. (5) and (6). 

c> Penetrant Diffusion 

It would be highly desirable if dynamical properties of a polymer could be 

correlated with its static or equilibrium structure in the bulk liquid. An example of such a 

correlation was made many years ago by Cohen and Turnbull who argued that the 

diffusion constant D, of a penetrant, such as a gas molecule diffusing through a liquid, 

would be proportional to the free volume larger than the penetrant size. Thus Cohen and 

Tumbull suggest that the diffusion constant of a molecule of radius R* is proportional to 

the insertion probability. 

% Oc I f(R)dR = P(R*) (17) 
R* 
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Since we find that for semiflexible chains the free volume distribution is essentially 

independent of chain stiffness, Eq. (17) would suggest that the penetrant diffusion 

constant would also be independent of the stiffness parameter K. 

In order to test this hypothesis, we studied’* the diffusion of monomeric 

penetrants in the same semiflexible chain melts discussed earlier. The diffusion constants 

of spherical penetrants, having their radius the same as the polymer repeat unit, were 

obtained from MD simulations+ as in an earlier study3*. D, was extracted from particle 

trajectories making use of the Einstein relation. 

DP=Iixix $ 
0 

(18) 

The results are shown in Table 3. Surprisingly, we find that the penetrant diffusion 

constant is not independent of chain stiffness as Eq.( 17) would suggest, but decreases by 

about a factor of two as the chains pass from freely jointed to freely rotating. Apparently 

that in addition to the free volume distribution, other factors also are important in 

controlling the diffusion constant. It should be mentioned, however, that extraction of 

diffusion constants from MD simulations is subject to uncertainties because of difficulties 

in getting into the diffusive, or Fickian regime. 

It is well known that PIB, the polymeric component of butyl rubber, exhibits an 

extraordinarily low diffusion constant for gases compared to other similar polyolefins. 

For example, the diffusion constant of N, through butyl rubber is approximately 

seventeen times smalle?’ than for ethylene propylene at room temperature. The effective 

hard core diameter for N, using Eqs. (5) and (6) is 3.58 A. From the data shown in Fig. 8, 

we can estimate the ratio of the insertion hrobabilities of PE to PIB is approximately nine 
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for inserting a particle of diameter 3.58 A. Thus we find qualitative agreement with the 

relationship between diffusion constant and free volume distribution given in Eq. 17. 

CONCLUSIONS 

In this investigation we have defined the free volume distribution in terms of the 

insertion probability for inserting a spherical cavity into the polymer liquid. With this 

definition we can compute the free volume distribution from both PRISM theory and MD 

simulations. Comparisons between theory and simulation demonstrates that PRISM 

theory is capable of accurately predicting the free volume distribution at small cavity 

sizes. However, in the tail of the free volume distribution, PRISM theory, because the 

compressibility is too high, tends to overestimate the insertion probability for inserting 

larger cavities. 

In the case of semiflexible chain liquids, we find from both MD simulation and 

PRISM theory that the free volume distribution is essentially independent of chain 

stiffness. The diffusion constant of monomer sized penetrants does seem to decrease as 

the polymer changes from a freely joined to a freely rotating chain. These observations 

tentatively lead us to the conclusion that Cohen and Turnbull’s conjecture, that diffusion 

is related to the free volume distribution through Eq. (17), is not rigorously correct based 

on our definition of free volume. We do find qualitative agreement with Cohen and 

Tumbull in the case of the relative diffusion constants of N, in PIFJ and PE. 

Further study is necessary in order to determine whether our calculational method 

for estimating the free volume distribution in polymer liquids could be useful in 

predicting, at least in a relative sense, other nonequilibrium properties such as glass 

transitions. 
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Table 1 - Lennard-Jones Interaction Parameters 

Polymer & To &/k,T 0, (A) 

Semiflexible bead 1 .oo 1.00 

PE CH, 448 0.1038 3.93 

CH2 298 0.1560 3.93 

PIB CH2 453 0.1007 3.95 

C 0.0011 6.40 

CH3 0.2146 3.73 

CH2 298 0.1530 3.95 

C 0.0017 6.40 

CH3 0.3262 3.73 

d (4 

1.0156 

3.59 

3.67 

3.60 

4.25 

3.54 

3.69 

4.39 

3.61 
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Table 2 - Average Free Volume 

Polymer 

Semiflexible 

K=O 

UK) p* 

0.8476 

K=l 0.8476 

K=5 0.8476 

K=20 0.8476 

PE 448 0.03294 0.48 1 

298 0.3678 -0.574 

PlB 453 0.00892 0.518 

298 0.00980 0.593 

rl** 

0.45 

0.45 

0.45 

0.45 

09 + (R*)-(R)*+ 

0.123 0.00768 

(0.119) (0.007 14) 

0.125 0.00827 

(0.119) (0.00706) 

0.1258 0.00818 

(0.119) (0.00704) 

0.1263 0.00823 

(0.120) (0.007 17) 

0.452 0.113 

0.379 0.0804 

0.447 0.113 

0.358 0.0742 

*p is the monomer density in units of Ae3 for PE and PIB and in units of dw3 for the 
semiflexible chains. 
**The packing fraction q was estimated from MD simulations for PE and PIB 
+ In units of A for PE and PIB and units of d for the semiflexible chains. Values in 
parentheses are from MD simulations, otherwise they are from PRISM. 
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Table 3 - Penetrant Diffusion Constants for Semiflexible Chain Liquids 

Stiffness K DP 

0 0.045 

2 0.048 

10 0.023 

20 0.020 
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FIGURE CAPTIONS 

1. Schematic diagrams of the polymer chains studied. Top: a tangent site, semiflexible 

chain; Middle: polyethylene chain with overlapping CH, sites; Bottom: 

polyisobutylene chain with three independent sites A (CH,), B (C), and C (CH,). 

2. Kratky plot of the single chain structure factor of semiflexible chains obtained from 

MD simulations with various chain stiffness. Starting from top to bottom: K=O, 1, 

5, 10,20. 

3. Intermolecular radial distribution function for semiflexible chains. Top: K=20, 

Middle: K=l, Bottom, K=O. 

4. Insertion probability P(R) for a semiflexible chain liquid with chain stiffness K=O. 

The solid curve is from PRISM theory, the dotted curve is from MD simulation. 

The inset is a plot of log P(R) versus R. The dashed curve in the inset is from 

PRISM theory with the compressibility correction. 

5. Free volume distribution f(R) for a semiflexible chain liquid with chain stiffness 

K=O. The solid curve is from PRISM theory, the dotted curve is from MD 

simulation. The dashed curve is from PRISM theory with the compressibility 

correction. The inset is a plot of log f(R) versus R*. 

6. Intermolecular distribution functions for polyethylene (top) and polyisobutylene 

(bottom 6). The curves have been shifted along the y-axis for clarity. 

7. Free volume distribution at T=298K for polyethylene (dotted curve) and 

polyisobutylene (solid curve) obtained from PRISM theory. The inset is the 

corresponding logarithmic plot of the insertion probability versus R. 
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8. Free volume distribution for polyethylene at 448K (dotted curve) and 

polyisobutylene at 453K (solid curve) obtained from PRISM theory. The inset is the 

corresponding logarithmic plot of the insertion probability versus R. 
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